新材料学院(中文)
 您现在的位置: 首页 > 研究生培养 > 讲座信息 > 正文
研究生培养
讲座信息
系列讲座
浏览次数:

时间:2013年5月22日
地点:北京大学深圳研究生院G-205
主办方:新材料学院
讲座(一)Tittle: Understanding and Manipulating Thermal Transport in Polymers
报告人: Tengfei Luo, Aerospace and Mechanical Engineering, University of Notre Dame
时间:2013年5月22日上午10:30-11:30
Abstract:
Polymers, usually known as thermal insulators, can have amazing thermal transport properties depending on their morphology. In this talk, we will discuss a series of atomistic simulations of thermal transport in polymers. We will first discuss how polyethylene molecules can be re-formed into highly aligned forest through self-assembling to conduct heat across two solid substrates efficiently. The results show the promise of polyethylene in thermal interface material applications and implies the strategy of reforming polymers into thermal conductors. We will then discuss the results on Polydimethylsiloxane  (PDMS) – the most widely used thermal interface polymer. The restuls suggest a strong correlation between the molecular morphology and thermal transport properties. Lastly, we will discuss our findings on the morphology-thermal conductivity dependency in polyethylene fibers, and show how we can utilize such a correlation to manipulate thermal conductivity through temperature, strain and their combination. 
Short Bio:
Tengfei Luo obtained his B.S. in Energy and Power Engineering at Xi’an Jiaotong University. He completed his Ph.D. at Michigan State University in 2009 and was a Postdoctoral Associate at MIT (2009-2011). He joined the University of Notre Dame faculty as an assistant professor of Aerospace and Mechanical Engineering in 2012, with an affiliation with the Center of Sustainable Energy at Notre Dame. Dr. Luo’s research area is in energy, with a focus on nanoscale thermal and mass transport and atomistic modeling. He directs the Molecular-level Energy and Mass Transport (MEMT) lab in the department of aerospace and mechanical engineering at Notre Dame. Of special interest to his group are thermal transport across material interfaces, first-principle characterization of phonon transport, and pump-probe measurement of thermal conductivity and interfacial thermal conductance. He is a coworker in a novel water desalination technology called Directional Solvent Extraction. This technology was selected as one of the top ten world-change ideas by Scientific America. His group is combing computation and experiments to optimize the desalination process. He has also coauthored “Handbook of Molecular Dynamics Potential Functions” published by Begell House. 
 
讲座(二)钙化软骨(Tessellated Cartilage)材料的性能仿真和表征
报告人:刘晓熹 美国加州大学
时间:2013年5月22日上午11:30-12:30
摘要:
Much of the skeleton of sharks, skate and rays (Elasmobranchii) is characterized by a tessellated structure, composed of a shell of small, mineralized plates (tesserae) joined by intertesseral ligaments overlaying a soft cartilage core. Although tessellated cartilage is a defining feature of this group, the significance of this skeletal tissue type — particularly from a mechanical perspective — is unknown.
In present work, a cross-sectional model was developed and validated to analyze the function of intertesseral joints in regulating the stress distribution within tessellated cartilage during bending. More dynamic mechanics of tessellated cartilage were investigated through stress relaxation test and percussion test and analyzed via constitutive models. The results indicate that tessellated structure provides possible advantages including increasing the resistance to fatigue damage, mitigating the risk of tearing under excessive bending loads, improving dynamic stiffness and reducing the risk of failure under impact in certain loading direction. Our study demonstrates a novel structure in manufacturing biomimetic materials with improved strength, durability and stability.
Portable Leave-in-Place Laser Scanning for Fatigue Damage Monitoring
(用于疲劳损伤监测的便携式激光扫描设备)
A compact leave-in-place laser-scanning device for the detection and monitoring of fatigue damage precursors has been developed. The current device is shown to be capable of detecting fatigue-related changes in the surface bidirectional reflectance distribution (BRDF) of aluminum test samples, and detectable changes in BRDF are measured at a very early stage of fatigue development. The system power requirements are compatible with standard sensor mote architectures that are targeted for multiyear lifetimes without battery replacement.
 
Short Bio:
Xiaoxi Liu (刘晓熹), PhD
Research Specialist
Department of Chemical Engineering and Materials Science
University of California, Irvine
 
讲座(三)水锂电池  
报告人:吴宇平 教授
时间:2013年5月22日下午15:00-15:30
简介:
    1987-1991年在湘潭大学化学系学习,并分别于1990年、1991年完成了有机化学和高分子化学两个专业学士毕业论文的设计。1994年毕业于中国原子能科学研究院,获工学硕士学位。1997年毕业于中国科学院化学研究所,获理学博士学位。1997-1999年在清华大学从事博士后研究工作。1999-2001在日本科学技术振兴事业团(JST)的资助下到日本早稻田大学应用化学系工作,并担任客员研究员。2001-2003年在德国洪堡基金委的资助下到开姆尼兹工业大学(原卡尔×马克思大学)作访问学者。2003年8月作为优秀人才引进到复旦大学化学系,聘为教授。
    目前已在国际、国内核心刊物上已经发表了论文60余篇,其中SCI刊物30多篇,EI收录15篇。并在国际、国内会议上发表论文19次,其中2次为大会邀请报告。申请中国发明专利4项,其中3项已经获得了授权。
    目前的主要研究领域:嵌入(插入,intercalation)电极反应动力学;固体电解质;固态锂离子电池;纳米材料在储能材料中的应用;微型电池及其材料制备。在很多参加主持国内和国际的学术会议。
    2013年,最新一期《自然》(Nature)杂志子刊《科学报道》(Sci.Report)刊发了复旦大学教授吴宇平课题组的一项重磅研究成果。
 
讲座(四):锂磷电池
报告人:何向明  
时间:2013年5月22日下午15:30-16:00
简介:
    清华大学核能与新能源技术研究院新型能源与材料化学研究室主任,博士生导师。清华大学化工系毕业,获学士和硕士学位,2007年在核研院获在职博士学位。从事锂离子电池及其材料研发及产业化工作。1989年进入清华大学核研院工作至今。期间1992-1993到德国进修1年。1997年核研院成立新型能源与材料化学研究室,任研究室副主任,2008年起任主任。在先进电池及其关键材料领域中有15年的研发和工程经验。主持研究课题主要来自973、科技部国际合作、国家专项和企业等,共30多项。主持包括锂离子电池材料、锂离子动力电池在内的多项产业化工作。申请发明专利100多项,其中申请美国日本发明专利40多项,已获授权中国发明专利30项。在国外期刊上发表论文110多篇,国内期刊上发表论文80余篇。其中SCI检索收录140篇、EI检索收录108篇。
    主要学术贡献:
    2003年至今,围绕锂离子电池的电性能及安全性重大需求,以材料化学为核心、通过多学科协同的创新解决关键材料、关键设计及关键技术。
(1) 研发出了新型高比容量负极材料及规模化制备技术,即聚丙烯腈低温热解复合法制备纳米合金负极材料和原位碳热还原法制备球状微纳包埋合金负极材料;
(2) 研发出系列聚合物基高稳定性电解质,提出了相转移法制备凝胶聚合物电解质的新技术,设计并合成出星形及梳状聚合物电解制添加剂;
(3) 研发出了氧化物正极材料的安全性改性技术,通过吸附反应技术实现了纳米非晶层对氧化物颗粒的完整包覆,克服了现有颗粒堆积包覆技术对材料性能造成的影响;
(4) 研发出了高安全性、长寿命锂离子电池技术体系,集成课题组及国际上在材料、电池结构、电池管理等方面的创新成果,攻克了大型安全性动力电池制备及应用的关键难题;
(5) 设计提出新型硫基电池结构,通过研发预锂化技术,回避金属锂负极的使用,解决了现有锂硫电池电性能差及安全性能的巨大缺陷;
(6) 在国际上率先提出以低成本的红磷为储锂负极材料、并开展了无机/高分子杂化硫基储锂正极材料的研究,研究结果发表在Angew. Chem. Int. Ed.(IF=13.4)等领域一级刊物上, 6项发明专利已获授权;
(7) 研发出高性能磷酸铁锂可规模化制备技术,实现了纳米片自组装高密度球形磷酸铁锂的可控制备,提出了纳米片状及多级结构磷酸铁锂的制备技术及工艺,产品电化学性能优异,研究结果发表于Nano Lett.(IF=13.2),已申报多项发明专利。