T. Heine
School of Science, TU Dresden, Germany
Abstract
The availability of sufficient and cheap energy, arising from sustainable resources, would change the planet to the good. It is well-known that cheap energy boosts the economy, but it also tames the population explosion and thus contributes to avoid starvation and social conflicts. The recent political developments demonstrate that sustainable energy either needs sustainable political support, or, and that is my viewpoint, it simply must be cheaper than fossil alternatives.
Energy materials contribute in the conversion of energy from sustainable resources such as solar and wind energy, or of waste energy, and are thus needed to manufacture solar cells, photocatalysts, thermoelectrics and osmotic power generators. The storage of energy requires batteries and supercapacitors, whose performance heavily relies on the materials they are made of.
In this talk I will cover a range of examples of our recent research where we contributed in the development of energy materials. Most of the work is based on organic 2D crystals [1], that is those 2D polymers that exhibit high crystallinity in 2D. These ultrathin materials can be utilized as coatings or skins for electrodes, suppressing unwanted side reactions and dendrite formation [2,3]. They can be used to photocatalyze a wide range of chemical reactions, notably water splitting [4] and the formation of hydrogen peroxide [5], and they can be used of osmotic power generation [6]. The different chemical potential in 2D heterostructures can result in efficient charge separation [7].
Another materials class are metal-organic frameworks (MOFs) can covalent organic frameworks (COFs), which are particularly suitable for new battery types, such as Li-sulphur batteries, which take advantage of the capability of sulpher to form oligomers in the framework pores [8-12]. I finally present a strategy to channel exciton formation in MOFs using an external electric field [13].
References
[1] Z. Wang, M. Wang, T. Heine, X. Feng, Nat. Rev. Mater. 10 (2024) 147-166
[2] Q. Guo, W. Li, X. Li, J. Zhang, D. Sabaghi, J. Zhang, B. Zhang, D. Li, J. Du, X. Chu, S. Chung, K. Cho, N. N. Nguyen, Z. Liao, Z. Zhang, X. Zhang, G. F. Schneider, T. Heine, M. Yu, X. Feng, Nat. Comm. 15 (2024) 2139
[3] D. Sabaghi, Z. Wang, P. Bhauriyal, Q. Lu, A. Morag, D. Mikhailovia, P. Hashemi, D. Li, C. Neumann, Z. Liao, A. M. Dominic, A. S. Nia, R. Dong, E. Zschech, A. Turchanin, T. Heine, M. Yu, X. Feng, Nat. Comm. 14 (2023) 760
[4] Y. Jing, X. Zhu, S. Maier, T. Heine, Trends Chem. 4 (9) (2022) 792-806
[5] R. Liu, Y. Chen, H. Yu, M. Polozij, Y. Guo, T. C. Sum, T. Heine, D. Jiang, Nat. Catal. 7 (2024) 195-206
[6] Z. Zhang, P. Bhauriyal, H. Sahabudeen, Z. Wang, X. Liu, M. Hambsch, S. C. B. Mannsfeld, R. Dong, T. Heine, X. Feng, Nat. Comm. 13 (2022) 3935
[7] Z. Wang, S. Fu, W. Zhang, B. Liang, T.-J. Liu, M. Hambsch, J. F. Pöhls, Y. Wu, J. Zhang, T. Lan, X. Li, H. Qi, M. Polozij, S. C. B. Mannsfeld, U. Kaiser, M. Bonn, R. T. Weitz, T. Heine, S. S. P. Parkin, H. I. Wang, R. Dong, X. Feng, Adv. Mater. 36 (2024) 2311454.
[8] S. Haldar, A. L. Waentig, A. R. Ramuglia, P. Bhauriyal, A. H. Khan, D. L. Pastoetter, M. A. Isaacs, A. De, E. Brunner, M. Wang, T. Heine, I. M. Weidinger, X. Feng, A. Schneemann, S. Kaskel, ACS Energy Lett. 8 (2023) 5098-5106
[9] P. Bhauriyal, T. Heine, J. Mater. Chem. A 10 (2022) 12400-12408
[10] S. Haldar, P. Bhauriyal, A. R. Ramuglia, A. H. Khan, S. De Kock, A. Hazra, V. Bon, D. L. Pastoetter, S. Kirchhoff, L. Shupletsov, A. De, M. A. Isaacs, X. Feng, M. Walter, E. Brunner, I. M. Weidinger, T. Heine, A. Schneemann, S. Kaskel, Adv. Materials 35 (2023) 2210151
[11] S. Haldar, P. Bhauriyal, A. R. Ramuglia, A. H. Khan, S. De Kock, A. Hazra, V. Bon, D. L. Pastoetter, S. Kirchhoff, L. Shupletsov, A. De, M. A. Isaacs, X. Feng, M. Walter, E. Brunner, I. M. Weidinger, T. Heine, A. Schneemann, S. Kaskel, Adv. Materials 35 (2023) 2210151
[12] S. Haldar, M. Wang, P. Bhauriyal, A. Hazra, A. H. Khan, V. Bon, Mark A. Isaacs, A. De, L. Shupletsov, T. Boenke, J. Grothe, T. Heine, E. Brunner, X. Feng, R. Dong, A. Schneemann, S. Kaskel, J. Am. Chem. Soc. 144 (2022) 9101-9112
[13] P. Singhvi, N. Vankova, T. Heine, Chem. Eur. J. 30 (2024) e202400180
Speaker's introduction
Thomas Heine, FRSC, MAE (PhD 1999, venia legendi 2006 TU Dresden) started his research group in 2008 at Jacobs University Bremen, moved in 2015 to University of Leipzig and 2018 to his current position as chair professor of theoretical chemistry at TU Dresden. He is a Clarivate Highly Cited Researcher with more than 420 peer-reviewed articles, an h-index of 98 (ISI) / 110 (Google Scholar), and more than 43000 citations. Prof. Heine is elected member of the Review Board of Deutsche Forschungsgemeinschaft (DFG). He coordinates DFG Priority Program PP 2244 “2D Materials: Physics of van der Waals [hetero]structures”, the DFG Researcher Training Group RTG 2861 “Planar Carbon Lattices”, and the Marie S. Curie European Training Network “2Exciting”. He holds a prestigious ERC Synergy Grant (2DPolyMembrane) and a DFG Reinhart-Koselleck project (top funding scheme for individuals by DFG).