Organic 2D crystals as energy materials
T. Heine
School of Science, TU Dresden, Germany
The availability of sufficient and cheap energy, arising from sustainable resources, would change the planet to the good. It is well-known that cheap energy boosts the economy, but it also tames the population explosion and thus contributes to avoid starvation and social conflicts. The recent political developments demonstrate that sustainable energy either needs sustainable political support, or, and that is my viewpoint, it simply must be cheaper than fossil alternatives.
Energy materials contribute in the conversion of energy from sustainable resources such as solar and wind energy, or of waste energy, and are thus needed to manufacture solar cells, photocatalysts, thermoelectrics and osmotic power generators. The storage of energy requires batteries and supercapacitors, whose performance heavily relies on the materials they are made of.
In this talk I will cover a range of examples of our recent research where we contributed in the development of energy materials. Most of the work is based on organic 2D crystals [1], that is those 2D polymers that exhibit high crystallinity in 2D. These ultrathin materials can be utilized as coatings or skins for electrodes, suppressing unwanted side reactions and dendrite formation [2,3]. They can be used to photocatalyze a wide range of chemical reactions, notably water splitting [4] and the formation of hydrogen peroxide [5], and they can be used of osmotic power generation [6]. The different chemical potential in 2D heterostructures can result in efficient charge separation [7].
Another materials class are metal-organic frameworks (MOFs) can covalent organic frameworks (COFs), which are particularly suitable for new battery types, such as Li-sulphur batteries, which take advantage of the capability of sulpher to form oligomers in the framework pores [8-12]. I finally present a strategy to channel exciton formation in MOFs using an external electric field [13].
References
[1] Z. Wang, M. Wang, T. Heine, X. Feng, Nat. Rev. Mater. 10 (2024) 147-166
[2] Q. Guo, W. Li, X. Li, J. Zhang, D. Sabaghi, J. Zhang, B. Zhang, D. Li, J. Du, X. Chu, S. Chung, K. Cho, N. N. Nguyen, Z. Liao, Z. Zhang, X. Zhang, G. F. Schneider, T. Heine, M. Yu, X. Feng, Nat. Comm. 15 (2024) 2139
[3] D. Sabaghi, Z. Wang, P. Bhauriyal, Q. Lu, A. Morag, D. Mikhailovia, P. Hashemi, D. Li, C. Neumann, Z. Liao, A. M. Dominic, A. S. Nia, R. Dong, E. Zschech, A. Turchanin, T. Heine, M. Yu, X. Feng, Nat. Comm. 14 (2023) 760
[4] Y. Jing, X. Zhu, S. Maier, T. Heine, Trends Chem. 4 (9) (2022) 792-806
[5] R. Liu, Y. Chen, H. Yu, M. Polozij, Y. Guo, T. C. Sum, T. Heine, D. Jiang, Nat. Catal. 7 (2024) 195-206
[6] Z. Zhang, P. Bhauriyal, H. Sahabudeen, Z. Wang, X. Liu, M. Hambsch, S. C. B. Mannsfeld, R. Dong, T. Heine, X. Feng, Nat. Comm. 13 (2022) 3935
[7] Z. Wang, S. Fu, W. Zhang, B. Liang, T.-J. Liu, M. Hambsch, J. F. Pöhls, Y. Wu, J. Zhang, T. Lan, X. Li, H. Qi, M. Polozij, S. C. B. Mannsfeld, U. Kaiser, M. Bonn, R. T. Weitz, T. Heine, S. S. P. Parkin, H. I. Wang, R. Dong, X. Feng, Adv. Mater. 36 (2024) 2311454.
[8] S. Haldar, A. L. Waentig, A. R. Ramuglia, P. Bhauriyal, A. H. Khan, D. L. Pastoetter, M. A. Isaacs, A. De, E. Brunner, M. Wang, T. Heine, I. M. Weidinger, X. Feng, A. Schneemann, S. Kaskel, ACS Energy Lett. 8 (2023) 5098-5106
[9] P. Bhauriyal, T. Heine, J. Mater. Chem. A 10 (2022) 12400-12408
[10] S. Haldar, P. Bhauriyal, A. R. Ramuglia, A. H. Khan, S. De Kock, A. Hazra, V. Bon, D. L. Pastoetter, S. Kirchhoff, L. Shupletsov, A. De, M. A. Isaacs, X. Feng, M. Walter, E. Brunner, I. M. Weidinger, T. Heine, A. Schneemann, S. Kaskel, Adv. Materials 35 (2023) 2210151
[11] S. Haldar, P. Bhauriyal, A. R. Ramuglia, A. H. Khan, S. De Kock, A. Hazra, V. Bon, D. L. Pastoetter, S. Kirchhoff, L. Shupletsov, A. De, M. A. Isaacs, X. Feng, M. Walter, E. Brunner, I. M. Weidinger, T. Heine, A. Schneemann, S. Kaskel, Adv. Materials 35 (2023) 2210151
[12] S. Haldar, M. Wang, P. Bhauriyal, A. Hazra, A. H. Khan, V. Bon, Mark A. Isaacs, A. De, L. Shupletsov, T. Boenke, J. Grothe, T. Heine, E. Brunner, X. Feng, R. Dong, A. Schneemann, S. Kaskel, J. Am. Chem. Soc. 144 (2022) 9101-9112
[13] P. Singhvi, N. Vankova, T. Heine, Chem. Eur. J. 30 (2024) e202400180
Thomas Heine, FRSC, MAE (PhD 1999, venia legendi 2006 TU Dresden) started his research group in 2008 at Jacobs University Bremen, moved in 2015 to University of Leipzig and 2018 to his current position as chair professor of theoretical chemistry at TU Dresden. He is a Clarivate Highly Cited Researcher with more than 420 peer-reviewed articles, an h-index of 98 (ISI) / 110 (Google Scholar), and more than 43000 citations. Prof. Heine is elected member of the Review Board of Deutsche Forschungsgemeinschaft (DFG). He coordinates DFG Priority Program PP 2244 “2D Materials: Physics of van der Waals [hetero]structures”, the DFG Researcher Training Group RTG 2861 “Planar Carbon Lattices”, and the Marie S. Curie European Training Network “2Exciting”. He holds a prestigious ERC Synergy Grant (2DPolyMembrane) and a DFG Reinhart-Koselleck project (top funding scheme for individuals by DFG).

讲座摘要:
能源材料在可持续能源以及废能的转换中发挥着重要作用。能源的储存主要依赖于电池和超级电容器,其性能则高度取决于所采用的材料。本次报告将介绍我们近期在能源材料开发方面的一系列研究进展。大部分研究聚焦于有机二维晶体,即在二维平面上具有高结晶度的二维聚合物。这些超薄材料可用于电极的涂层或表面修饰,有效抑制不良副反应和枝晶的形成。此外,它们可作为光催化剂促进多种化学反应,尤其是在水裂解和过氧化氢生成方面表现突出,同时也可用于渗透能量转换。在二维异质结构中,由于化学势的差异,这些材料能够实现高效的电荷分离。另一类关键材料是金属有机框架(MOFs)和共价有机框架(COFs),它们在新型电池(如锂-硫电池)中表现突出。框架结构的孔隙能够稳定硫元素并促进其形成低聚物,从而显著提升电池性能。最后,我将介绍一种利用外加电场调控MOFs中激子形成的策略。
主讲人简介:
Thomas Heine,计算化学家,德国德累斯顿工业大学首席教授,欧洲科学院院士,英国皇家化学会会士,1999年博士毕业于德累斯顿工业大学,2008年于不来梅雅各布大学创建研究团队,2015年于莱比锡大学担任W3教授,2018年加入德累斯顿工业大学担任W3教授并成立理论化学系。Heine教授是Clarivate高被引科学家,迄今发表420余篇同行评审论文,h指数98,总引用次数超过43,000次。目前,Heine教授担任德国科学基金会(DFG)评审委员会委员,担任欧盟和德国多项重大科研项目首席科学家,包括DFG重点项目SPP2244“二维材料:范德华异质结物理”、DFG博士培养项目RTG2861“平面碳晶格”以及玛丽居里欧洲培训网络“2Exciting”等。此外,他还获得了欧洲研究理事会(ERC)协同项目(2DPolyMembrane),并主持DFG Reinhart-Koselleck项目(DFG个人资助的最高级别)。